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Asymptotic analysis provides a basis for deriving the "heat reservoir" boundary 
condition when a solid surface is in contact with a region of vigorous liquid 
motion; it simplifies the formulation of multilayer heat and mass transfer prob- 
lems under definite conditions. An effective heat conduction equation resembling 
Taylor's dispersion equation is obtained for the heat transfer in the liquid. 

Introduction. The heat reservoir boundary condition appears naturally in considering 
certain heat and mass transfer problems [1-4]. Its distinctive feature is the fact that 
the boundary ratio contains the time derivative of the function sought. This condition is 
traditionally just postulated, as in the aforementioned studies; some considerations are 
advanced regarding the rapid temperature (concentration) equalization within a region that 
is arbitrarily termed a heat reservoir, and a heat (material) balance equation is written 
for it. This approach leaves a number of questions unclear: how is the concept of "rapidly 
equalized" to be evaluated numerically and what refinements of this condition are possible 
when the temperature does not equalize with sufficient rapidity within the reservoir? Here 
we can clearly see that there is some dimensionless parameter whose limiting value corres- 
ponds to the idealization represented in the process description by the boundary condition 
under consideration. Methodology of this sort was implemented in [5, 6], where the formula- 
tion of the heat reservoir condition was investigated for contact between two bodies with 
substantially different coefficients of thermal conductivity. We will examine the two- 
dimensional problem involving thermal contact between a solid and a region occupied by a 
liquid undergoing rapid displacement. The coefficients of thermal conductivity in the solid 
and reservoir will be considered to be commensurate with contact taking place over only a 
portion of the solid surface (see Fig. i). 

Formulation of the Problem. The heat conduction equations for non-one-dimensional liq- 
uid flow within a reservoir, which have convective terms that depend on the aggregate of 
the spatial coordinates, are quite complicated for analysis by exact methods. We will some- 
what simplify the problem by assuming the liquid flow to be two-dimensional and the liquid 
itself to be incompressible. The convection field will be assumed to be known and expressed 
in terms of the flow function ~, which exists under our conditions. We will ascertain below 
that only a definite integral characteristic of the convection field is actually required. 
The liquid flow can be induced by various fluid dynamic factors. This is not important for 
our analysis. 

The reservoir will be treated as elongated in the direction normal to the solid (see 
Fig. I). The basic equations of the problem are: 

u = O ~ / O g ,  v = - - O ~ / O x  ( i )  

which are the velocity component ratios following from the conditions that the liquid be 
incompressible and the flow be two-dimensional; 

. ( OT, 3 T ,  ) O2T, 02T, e 2 0 T .  + e p e  u + v  -- + e  2 
O~ , OX Oy Og 2 Ox z ( 2 ) 

which is the equation for the convective heat conduction in the reservoir, and 

OT 02T 02T 2t 
--+--, ~ = - - ,  (3)  
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which is the heat transfer conduction equation for the primary body. It is necessary to 
supplement the latter equation by formulating the "heat reservoir" condition at the res- 
ervoir boundary. This is done in order to simplify the heat transfer problem in a two- 
layer region with different process parameters and heat transfer mechanisms, and it entails 
replacing the influence of the region in which the complex convective heat transfer takes 
place with an asymptotically valid boundary condition. Here there is no need for detailed 
solution of the full adjoint heat transfer problem with the conditions on the contact sur- 
face: 

OT I OT,  ] 
TIx:o = r , tx=o,  X -7-2-- x=o = ~* ~c)X Ix~o (4) 

which are required in order to complete the formulation of the problem for Eqs. (2)-(3). 
We do not have to have any initial conditions at this stage of the analysis, it should 
be remarked that the heat liberated in the liquid as a result of viscous energy dissipa- 
tion is neglected. The length scales parallel to the x and y axes in dimensionless equa- 
tion (2) are taken to be the reservoir dimensions Zx and s respectively, and their con- 
nection to the dimensional parameters is given by the formulas: 

�9 2 ~ ~ , t / p , c ,  Ix. Pe = ~gop,C,/~,. s = ly/l~ << I. (5) 

where ~0 is the flow function scale. Quantities pertaining to the reservoir carry the 
index *. 

We will consider the region occupied by the reservoir to be rectangular in shape, in 
order not to make our exposition too unwieldy. Possible complications of reservoir shape 
will be discussed below. 

i. Derivation of Heat Dispersion Equation. Our (intermediate) goal at this point is 
to obtain a simpler one-dimensional equation in place of (2). Besides being of aid in 
constructing a boundary condition of the heat reservoir type, this transformation is itself 
of interest for description of heat and mass transfer in liquid media in the presence of 
complex convection currents. 

Since the parameter c is a small quantity, we will seek the solution of the problem in 
the form of a perturbation-method series: 

T ,  T ~ + s T t , + s T ~  + . . . .  (6) 

The boundary conditions on the variable x are not significant for this stage of our 
analysis, and Eq. (2) is therefore subject only to the following conditions: 

OT,/@[u=o: ~ = 0, ( 7 )  

which expresses absence of a heat flux at the corresponding reservoir region boundaries, 
and the stream function will be assumed to vanish at the flow region boundary. 

It must be noted that the order of the terms we have chosen in Eq. (2) is intended to 
allow them to be successively taken into account, as in Taylor's analysis [7] of the dis- 
persion of an impurity in a round pipe. We are essentially proposing another approach to 
derivation of the dispersion equation, one that makes it possible to ana4yze material or 
energy transport with more complex velocity profiles than those realized in prismatic pipes. 
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The proposed small-parameter procedure was implemented in [8-10]; the problem in [9] 
was analogous to that being considered here, i.e., Eq. (i), (2), and (7). We will there- 
fore only give the final result: 

or~ { or~ I ar Ox [1 + Pe ~ a, (x)] -bT-J (8) 

which is the equation we are seeking for the effective heat conduction in the reservoir. 
Here 

1 

a, (x) = J" ~z (x, g) dg (9) 
0 

is the coefficient of heat dispersion and originates in the nonuniformity of the rate of 
heat transfer by convective motion under the influence of molecular heat conduction. The 
superior zero in Eq. (8) will henceforth be omitted for brevity, and this equation will be 
employed to describe the heat transfer in the reservoir. 

When liquid motion in the reservoir is vigorous (Pe + ~), the dispersion coefficient 
substantially exceeds the coefficient of molecular thermal diffusivity, which leads to 
rapid temperature equilization over the reservoir volume; however, no matter how large the 
dispersion coefficient within the region, a.(x) + 0 at its boundary, there should con- 
sequently be a transitional (boundary-layer) zone where the temperature changes more 
abruptly. The thickness of the boundary layer 6 is easily estimated if we note that the 
function a,(x)!has a fourth-order zero when x = 0 (since the stream function and its normal 
derivative vanish at the boundary x = 0) and that the dispersion and thermal diffusivity 

coefficients in this layer are of the same order of magnitude. We have 6/l~----O(i/~Pe), 

where Pe + ~. We introduce the notation z=a(~ 4) (0)/4!, carry our a similar deformation of 

the coordinate, i.e., z=x(Pe2• U4 , and wishing to obtain a nonsteady state equation 

approximating the boundary layer, come up against the need to "stretch" the time: 0=~(• 
As a result, we have the limiting equation 

aT, 0 [ z~) OT, ] 
a--8--= a-~ (I -k ~ , (10) 

which can be used to analyze various heat and mass transfer problems (and not just for the 
purposes of the present study; see [i0]). 

The need to consider the limiting variant Pe + ~ in deriving a condition of the "heat 
reservoir" type also follows from comparison of the characteristic heating times in the 
solid (t I = pcs and the reservoir (t' 2 = ~/~0, as a consequence of convection). With 
the "guideline" criteria generally utilized [1-4] in constructing the "heat reservoir" 
condition, it is required that t' 2 << tz, whence it follows the Pe >> i. 

2. Derivation of Condition of "Heat Reservoir" Type. The processes that occur during 
the characteristic time for the solid, t I = pc~/%, are of primary interest in our problem 
of deriving a boundary condition of the "heat reservoir" type. It should be noted that 
the time scale for Eq. (I0) to be "operative" substantially exceeds the characteristic time 
of basic equation (8) when Pe + ~, so that we can henceforth utilize (i0) in the quasi- 

2 steady-stateapproximation for analyzing processes with a scale t 2 = P,C,~x/~ ,, which we 
will assume to be similar in order of magnitude to tz. We would otherwise arrive at the 
variants considered previously [5, 6]. When t 2 = O(tl), the main feature distinguishing 
the case under investigation from those in [5, 6] is the fact that the effective coeffi- 
cient of thermal diffusivity Pe2a,(x) (Pe + ~) in Eq. (8) is greater than the correspond- 
ing coefficient a in (3) over virtually the entire reservoir volume but not near the con- 
tact boundary, where a~(x) ~ 0. The other parameters are comparable in magnitude. As a 
consequence, the results of [5, 6] cannot be directly extended to our example. 

The specific problem under consideration thus permits use of simple solutions of Eq. 
(i0), by virtue of the applicability of the quasi-steady-stat~ approximation. However, 
this question is also helpful in finding the corrections to the basic approximation of 
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the "heat reservoir" condition, i.e., we have formulated equations whose analysis enables 
us to approach derivation of this condition by means of asymptotic expansions rather than 
on the basis of preliminary estimates, in which case one can only hope to obtain the 
primary approximation. 

We now turn to the principal objective of the present study, i.e., construction of 
a condition of the "heat reservoir" type. Switching from Eq. (2) to (8) does not alter 
the structure of conditions (4), as a consequence of the equality a,(0) = 0, but it must 
be taken into account that (8) is essentially averaged over the y coordinate [8-10]. When 
we integrate Eq. (8) over x, taking into account the lack of any heat flux at the outer 
reservoir boundary, i.e., 8T,/SXlx= I = 0, we find 

! 

0 < T , >  __ OT, =o a~ ax ' < T ,  > = t ' T ,  dx. (11) 

By virtue of our earlier remarks, the quantity <T,> can serve as the boundary condition 
at infinity for boundary equation (i0), since the value of the function T.~ in the integral 
in (ii) is determined almost everywhere [except in a zone of thickness 6/~x = O(Pe-Z/2)] 
by the exterior solution [ii, 12], which depends solely on ~ as can easily be seen. 

We will show that <T,> in [ii] can, in first approximation for Pe -I, validly be re- 
placed by the average temperature of the reservoir-system interface. Actually, if we take 
into account the quasi-steady-state character of Eq. (i0) when ~ = 0(i), we can easily 
find its integral and then the relationship in which we are interested: 

< T,  > --TIx=o = (xPe~) -1/4 aT x=o ~ dx -- O(Pe-lm) ---~x x-o 
" " O x  ~ 1 + x "  " _ ' 

(12)  

where, since T, was averaged over y in converting to (8) [8-10], averaging is also carried 
out in boundary conditions (4): 

Tlx=o = t Tl~=odV, 
,/ 
0 

aT aT 

,=o J = o - - - ~ x  x=~ dY" 

It follows from (12) that <T.>~= = Tlx= 0 up to terms of order O(Pe -I/2). Substitution of the 
latter relation into (ii) gives us the heat reservoir condition sought: 

9,c,l.,:OT/Otix=o = - -  %OT/OXIx=o �9 (13) 

It is in turn necessary to determine the value of TIx=0; t=0 in order to utilize Eq. 
(13). As was noted in [6], this requires construction of the interior [ii, 12] expansion 
and splicing with the solution of the exterior problem. Our task is simplified in first 
approximation by the observation that the interior expansion "works" at shorter time 
scales [6] than the exterior expansion, where there cannot be any perceptible heat trans- 
fer between the system and reservoir. Switching to the "internal" time in relation (ii) 
therefore leads to the conclusion that <T,> is constant, which enables us to find the 
following expression, analogous to that in [6], by splicing in the (integral) relation in 
question: 

I 1 

'Tlx=o;t=o ---- .i.f T ,  (x, Y)],=o dxdy, (14)  
0 0  

where T, It= 0 corresponds to the initial temperature distribution in the reservoir. 

Since we have limited ourselves to analyzing the main approximation, we have written 
expansion formulas for Pe -l of the type of (6), and it should therefore be noted that re- 
lations (13)-(14) belong to the zero-order approximation with respect to Pe -I for solution 
of the problem in the system. The zero index in Eq. (3) can then be omitted [i.e., (3) can 
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be used), and boundary conditions (13)-(14) should, when necessary, be supplemented by 
any conditions on the remainder of the system boundary that correspond to the situation 
under analysis. 

It is natural to expect that the condition sought will retain a structure similar to 
that of (13) when the heat reservoir and the interface between it and the system have 
more complex shapes. If the reservoir boundaries are formed by coordinate surfaces of 
some orthogonal coordinate system, then the above program can be extended with minor 
complications to this case by utilizing the effective diffusion (heat conduction) equa- 
tion obtained in [9]. An analogous approach can be recommended when it is possible to 
construct a coordinate system from the family of flow functions and lines orthogonal to 
them. For example, problems of this sort arise in analyzing the internal mass transfer 
problem for a spherical drop bathed by an exterior flow with small Reynolds numbers, 
where we arrive at the Kronig-Brink equation within a definite time interval [13, 14]. 
In these variants, as in those discussed above, the role of the equation of the type of 
(8) reduced to indication of rapid temperature equalization far from the system boundary 
as Pe ~ ~, and the average temperature in the reservoir then served as the boundary con- 
dition at infinity for the boundary layer equation of the type of (i0) in considering the 
primary approximation for Pe -I If we postulate a similar role for the average reservoir 
temperature in more general problems, we can see that the main problem is to establish the 
feasibility of extending this average parameter to the system-reservoir contact surface, 
as relation (12) made it possible to do. 

Actually, if we utilize the natural coordinates s and n associated with the interface 
[15], application of the Ostrogradskii-Gauss theorem to the heat conduction equation in 
the reservoir with no heat fluxes at the outer boundaries (not associatedwith the system) 
and the continuity equation taken into account gives us the following expression in place 
of (ii): 

OT. 1 
p,c,W d ( r , )  ~,, I - -~n ,=odS, <T~.>-- W !'V, dW, (15) 

dt 's ' i~~ 

where W is the reservoir volume and S is the contact surface with the system. By localizing 
Eqs. (8)-(9) as ~y + 0, we can then obtain an approximation equation for the boundary layer: 

p,c, OT, 0 { OT, 1 
Ot -- --On [~'* + • (s) nq --O-Z] ' (16) 

which generalizes (8) to more complicated situations. Here 

• (s) = o,25p~ d ,  (ov./onl.=o)~/~, (i7) 

is the flow function at the contact surface. It should be remarked that localization (16) 
is applicable if there are no places on the contour with small radii of curvature. How- 
ever, such points make a local contribution to the total energy transfer between the res- 
ervoir and the system that is generally negligible in comparison with that made by the 
heat fluxes through the smooth portions of the contour. We should also note that it is 
sometimes convenient to associate the quantity ~Vs/an at the boundary in (17) with the 
surface friction density. 

When (16) is analyzed with boundary conditions similar to (4) taken into account, it 
is easily ascertained by analogy with the problem examined above that a relation of the 
type of (12) holds, and this enables us to formulate the "heat reservoir" boundary con- 
dition in the form 

OT dS, OT = - - E S  On (18) P * c * W - ~ s  s 

where the heat flux on the right side of (18) cannot be removed from under the integral sign 
in the general case. Both sides of equality (18) contain quantities that depend solely on 
time. 
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As before, switching to a shorter time scale (interior expansion) in (15) leads to the 
conclusion that the quantity <T.> is preserved in the interior solution of the first approxi- 
mation, which ultimately enables us to supplement (18) with the relation 

T l s , t = o  = 1 ---~. f  T,(W, O) dW. (19) 
W 

Conclusions. It must be noted that boundary conditions of the type of (13) and (18) 
can contain additional terms associated with heat input to the reservoir from outside. How- 
ever, these fluxes should not be very strong (i.e., should be of appropriate order of mag- 
nitude with respect to Pe-1), in order that they can be included in harmonic form in the 
small-parameter expansions. 

The heat dispersion equation obtained with non-one-dimensional liquid flow can be 
applied to a number of heat and mass transfer problems. Here we have employed it to con- 
struct a boundary condition of the "heat reservoir" type by asymptotic methods. The 
"heat reservoir" condition permits simplified formulation of some multilayer heat and 
mass transfer problems. 

NOTATION 

c) specific heat capacity; T) temperature; T~) components of reservoir temperature 

expansion in parameter s; t) time; X, Y, x, y) dimensional and dimensionless Cartesian 

coordinates; I) coefficient of thermal conductivity; Vs) tangential velocity at system- 

reservoir interface; p) density; ,) quantities pertaining to reservoir; < >) symbol for 
averaging. 
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